Thursday, August 11, 2022

Flavonoid Extract from Propolis Protects Heart After Myocardial Infarction (Heart Attack)

Flavonoid Extract from Propolis Provides Cardioprotection following Myocardial Infarction by Activating PPAR- γ

Evid Based Complement Alternat Med. 2022 Jul 5;2022:1333545

We have previously reported that flavonoid extract from propolis (FP) can improve cardiac function in rats following myocardial infarction (MI). However, the mechanisms responsible for the cardioprotective effects of FP have not been fully elucidated. In the current study, we explored whether FP can reduce inflammatory cytokines and attenuate sympathetic nerve system activity and antiendoplasmic reticulum (ER) stress and whether the cardioprotective effects are related to peroxisome proliferator-activated receptor gamma (PPAR-γ) activation.

Sprague Dawley rats were randomly divided into six groups: Sham group received the surgical procedure but no artery was ligated; MI group received ligation of the left anterior descending (LAD) branch of the coronary artery; MI + FP group received FP (12.5 mg/kg/d, intragastrically) seven days prior to LAD ligation; FP group (Sham group + 12.5 mg/kg/d, intragastrically); MI + FP + GW9662 group received FP prior to LAD ligation with the addition of a specific PPAR-γ inhibitor (GW9662), 1 mg/kg/d, orally); and MI + GW9662 group received the PPAR-γ inhibitor and LAD ligation.

The results demonstrated that the following inflammatory markers were significantly elevated following MI as compared with expression in sham animals: IL-1β, TNF-α, CRP; markers of sympathetic activation: plasma norepinephrine, epinephrine and GAP43, nerve growth factor, thyroid hormone; and ER stress response markers GRP78 and CHOP. Notably, the above changes were attenuated by FP, and GW9662 was able to alleviate the effect of FP.

In conclusion, FP induces a cardioprotective effect following myocardial infarction by activating PPAR-γ, leading to less inflammation, cardiac sympathetic activity, and ER stress.

Tuesday, August 02, 2022

Bee Venom May Help Treat Prostate Cancer


Formulation, characterization and cellular toxicity assessment of a novel bee-venom microsphere in prostate cancer treatment


Scientific Reports volume 12, Article number: 13213 (2022)

Bee venom (B.V.) is a toxin produced naturally by honey bees with several toxic and therapeutic efficacies. It is used in the treatment of different cancer kinds like renal, hepatic, and prostate cancer. Due to its protein nature, it is degraded in the upper gastrointestinal tract. Colon-targeted drug delivery systems represent a useful tool to protect B.V. from degradation and can be administered orally instead of I.V. infusion and traditional bee stinging. In the present study, B.V. loaded enteric-coated cross-linked microspheres were prepared by emulsion cross-linking method. Percentage yield, entrapment efficiency %, swelling degree, and in-vitro release are evaluated for prepared microspheres. Free B.V., optimized microspheres formula (F3), and doxorubicin cytotoxic effects were tested by MTT assay. Results concluded that free B.V. was more effective against the growth of human prostate adenocarcinoma (PC3) cells followed by optimized microspheres than doxorubicin. But both free B.V. and doxorubicin have a cytotoxic effect on normal oral epithelial cells (OEC). According to flow cytometric analysis, the optimized microsphere formula induced apoptosis and reduced necrosis percent at IC50 concentration. Furthermore, microspheres did not affect the viability of OEC. These results revealed that microspheres have a degree of specificity for malignant cells. Therefore, it seems that this targeted formulation could be a good candidate for future clinical trials for cancer therapy.