Monday, November 18, 2019

Black Seed Oil, Honey, Whey Protein Increase Antioxidant Activity


Effect of black seed oil, honey, whey protein concentrate and their interaction on antioxidant activity, elastic modulus and creaming index of O/W emulsions

Journal of Dispersion Science and Technology

An emulsion based on a combination of highly-valued black seed oil (BSO) and honey shall be introduced as an emerging nutraceutical since the emulsion could be an efficient carrier for bioactive compounds from both.

This study aimed to determine effect of BSO, honey, whey protein concentrate (WPC) and their interaction on antioxidant activity (i.e. IC50, the concentration of sample required to scavenge 50% of 2,2-diphenyl-1-picrylhydrazyl free radicals), elastic modulus (G′) and creaming index (CI) of O/W emulsions by means of a response surface methodology. Twenty emulsions were ultrasonically prepared by using various combinations of BSO (10–20%), honey (10–20% and WPC (2–6%) based on a central composite design. Regression analysis (R2 = 0.92–1.00) revealed that a decrease in the IC50 was mainly due to significant (p < 0.05) linear effect of honey and WPC.

The quadratic effect of WPC significantly increased the G′ yet decreased the CI. Synergistic effects of BSO-honey on IC50 and G′ were also significant (p < 0.05). However, the antagonistic effect (p < 0.05) of honey-WPC seemed to increase the IC50. By using the fitted quadratic models, the optimized levels of BSO (20.0%), honey (18.2%) and WPC (6.0%) were proposed and predicted to provide the desired emulsion with IC50 = 0.12 mg/ml, G′ = 606.65 Pa and CI = 1.45%. These values were successfully validated with their respective experimental values.

Monday, November 11, 2019

Propolis an Eco-Friendly Antibacterial Coating for Wound Sutures

Characterization of silk sutures coated with propolis and biogenic silver nanoparticles (AgNPs); an eco-friendly solution with wound healing potential against surgical site infections (SSIs)

Turk J Med Sci. 2019 Oct 27

BACKGROUND/AIM:

Bacterial adherence to a suture material is one of the main reasons that cause surgical site infections. An antibacterial suture material with enhanced wound healing function may prevent the surgical site from infections. Thus, the present study was aimed to investigate the synergistic effect of propolis and biogenic metallic nanoparticles when combined with silk sutures for biomedical use.

MATERIALS AND METHODS:

Silver nanoparticle (AgNP) synthesis was carried out via a microbial-mediated biological route and impregnated on propolis-loaded silk sutures using an in situ process. silk sutures fabricated with propolis and biosynthesized AgNPs (bioAgNP-propolis coated sutures) were intensively characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). Antibacterial characteristics of the bioAgNP-propolis coated sutures was evaluated using agar plate method. Biocompatibility of the bioAgNP-propolis coated sutures was evaluated using 3T3 fibroblast cells and their wound healing potential was also investigated.
RESULTS:

BioAgNP-propolis coated sutures displayed potent antibacterial activity against pathogenic Gram negative and Gram positive bacteria; Escherichia coli and Staphylococcus aureus, respectively. BioAgNP-propolis coated silk sutures were found to be biocompatible with 3T3 fibroblast cell culture. In vitro wound healing scratch assay was also demonstrated that the extract of bioAgNP-propolis coated sutures stimulated the 3T3 fibroblasts? cell proliferation.

CONCLUSION:

Coating the silk sutures with propolis and biogenic AgNPs gained an effective antibacterial capacity to surgical sutures besides providing biocompatibility and wound healing activity.

Friday, November 08, 2019

Honey and Its Combination with Metformin Prevents Hyperglycemia, Stimulates Insulin Secretion, Reduces Liver Fat Accumulation, Attenuates Liver Injury and Kidney Damage


Combination of honey with metformin enhances glucose metabolism and ameliorates hepatic and nephritic dysfunction in STZ-induced diabetic mice

Food Funct. 2019 Nov 5

Honey is a natural sweetener that contains a large amount of monosaccharides such as glucose and fructose, as well as small amounts of disaccharides and trisaccharides such as sucrose and pine trisaccharides. In addition to carbohydrates, honey also contains vitamins, minerals, enzymes, amino acids, and polyphenols including phenolic acids and flavonoids.

The polyphenols in honey have been proved to have great antioxidant activity, besides inhibiting α-glycosidase activity and improving blood-lipid metabolism. However, whether it is safe for diabetic patients to consume honey remains controversial.

This study investigated the effects of honey, metformin and their combination on the characteristic pathological changes and glucose metabolism in STZ-induced diabetic mice over five weeks.

Our results showed that honey and its combination with metformin could prevent hyperglycemia, stimulate insulin secretion, reduce liver fat accumulation, attenuate liver injury and kidney damage in STZ-induced diabetic mice.

Moreover, treatment with honey or combination of honey and metformin significantly enhanced glucokinase (GK) activity (p < 0.05), and meanwhile suppressed the activities of glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), pyruvate carboxylase (PC) and pyruvate dehydrogenase kinases (PDK) (p < 0.05) in diabetic mice.

Thursday, November 07, 2019

Bee Venom Has Anticoagulant Properties

The anticoagulant effect of Apis mellifera phospholipase A2 is inhibited by CORM-2 via a carbon monoxide-independent mechanism

J Thromb Thrombolysis. 2019 Nov 2

Bee venom phospholipase A2 (PLA2) has potential for significant morbidity. Ruthenium (Ru)-based carbon monoxide releasing molecules (CORM) inhibit snake venoms that are anticoagulant and contain PLA2. In addition to modulating heme-bearing proteins with carbon monoxide, these CORM generate reactive Ru species that form adducts with histamine residues resulting in changes in protein function.

This study sought to identify anticoagulant properties of bee venom PLA2 via catalysis of plasma phospholipids required for thrombin generation. Another goal was to determine if Ru-based CORM inhibit bee venom PLA2 via carbon monoxide release or via potential binding of reactive Ru species to a key histidine residue in the catalytic site of the enzyme. Anticoagulant activity of bee venom PLA2 was assessed via thrombelastography with normal plasma.

Bee venom PLA2 was then exposed to different CORM and a metheme forming agent and anticoagulant activity was reassessed. Using Ru, boron and manganese-based CORM and a metheme forming agent, it was demonstrated that it was unlikely that carbon monoxide interaction with a heme group attached to PLA2 was responsible for inhibition of anticoagulant activity by Ru-based CORM. Exposure of PLA2 to a Ru-based CORM in the presence of histidine-rich human albumin resulted in loss of inhibition of PLA2.

Ru-based CORM likely inhibit bee venom PLA2 anticoagulant activity via formation of reactive Ru species that bind to histidine residues of the enzyme.

Tuesday, November 05, 2019

UMF Value a Not Reliable Indicator of Manuka Honey Antibacterial Activity

Antibacterial activity of varying UMF-graded Manuka honeys

PLoS One. 2019 Oct 25;14(10):e0224495

Honey has been used as a traditional remedy for skin and soft tissue infections due to its ability to promote wound healing. Manuka honey is recognized for its unusually abundant content of the antibacterial compound, methylglyoxal (MGO).

The Unique Manuka Factor (UMF) grading system reflects the MGO concentration in Manuka honey sold commercially. Our objective was to observe if UMF values correlated with the antibacterial activity of Manuka honey against a variety of pathogens purchased over the counter.

The antibacterial effect of Manuka honey with UMF values of 5+, 10+, and 15+ from the same manufacturer was assessed by the broth microdilution method. Minimum inhibitory concentration (MIC) values were determined against 128 isolates from wound cultures representing gram-positive, gram-negative, drug-susceptible, and multi-drug resistant (MDR) organisms.

Lower MICs were observed with UMF 5+ honey for staphylococci (n = 73, including 25 methicillin-resistant S. aureus) and Pseudomonas aeruginosa (n = 22, including 10 MDR) compared to UMF 10+ honey (p < 0.05) and with UMF 10+ compared to UMF 15+ (p = 0.01). For Enterobacteriaceae (n = 33, including 14 MDR), MIC values were significantly lower for UMF 5+ or UMF 10+ compared to UMF 15+ honey (p < 0.01). MIC50 for UMF 5+, UMF 10+, and UMF 15+ honey against staphylococci was 6%, 7%, and 15%, and for Enterobacteriaceae was 21%, 21%, and 27%, respectively.

For Pseudomonas aeruginosa MIC50 was 21% and MIC90 was 21-27% for all UMFs. Manuka honey exhibited antimicrobial activity against a spectrum of organisms including those with multi-drug resistance, with more potent activity overall against gram-positive than gram-negative bacteria.

Manuka honey with lower UMF values, in our limited sampling, paradoxically demonstrated increased antimicrobial activity among the limited samples tested, presumably due to changes in MGO content of honey over time. The UMF value by itself may not be a reliable indicator of antibacterial effect.

Friday, October 25, 2019

Honey May Help Prevent Osteoporosis, Promote Bone Health


A Review of Potential Beneficial Effects of Honey on Bone Health

BUY Concentrated Propolis in Veggie Capsules  

BUY 3-Piece (2 Fountain Pens, Rollerball) Gift Set

Evid Based Complement Alternat Med. 2019 Sep 19;2019:8543618

Bone remodelling is a complex and tightly regulated process. Disruption of bone remodelling skewing towards resorption will cause osteoporosis and increase the risk of fragility fracture. Honey is a natural product containing various bioactive ingredients with health benefits, especially polyphenols.

Therefore, honey may be a novel dietary supplement to prevent osteoporosis. This review aims to summarize the current evidence on the effects of honey on bone health. The evidence reported so far indicates a skeletal-beneficial effect of honey in animal models of osteoporosis. However, the number of studies on humans is limited.

Honey can protect the bone via its antioxidant and anti-inflammatory properties, primarily through its polyphenol content that acts upon several signalling pathways, leading to bone anabolic and antiresorptive effects.

In conclusion, honey is a potential functional food for bone health, but the dose and the bioactive contents of honey need to be verified prior to its application in humans.

Tuesday, October 22, 2019

Propolis Mouthwash More Effective Against Oral Bacteria Than Listerine


Evaluation of Antibacterial Effect of Propolis and its Application in Mouthwash Production

Front Dent. 2019 Jan-Feb;16(1):1-12

BUY Concentrated Propolis in Veggie Capsules  

BUY 3-Piece (2 Fountain Pens, Rollerball) Gift Set

Objectives:

Our purpose was to determine the antibacterial properties of propolis and to evaluate its use as an antibacterial mouthwash with minimal complications.

Materials and Methods:

In this experimental laboratory study, an alcoholic propolis extract was prepared. The minimum inhibitory concentration (MIC) was calculated for four bacterial species including Staphylococcus aureus (S. aureus), Streptococcus mutans (S. mutans), Lactobacillus acidophilus (L. acidophilus), and Enterococcus faecalis (E. faecalis) using agar dilution. According to the MIC, a propolis antibacterial mouthwash was produced and compared to water, chlorhexidine (CHX), and Listerine using laboratory rats for clinical examination. Salivary specimens of rats were collected at 12 hours, 1 week, and 2 weeks after using the mouthwash and examined by real-time polymerase chain reaction (RT-PCR). Data were analyzed using one-way analysis of variance (ANOVA) and repeated measures ANOVA (α = 0.05).

Results:

The results of agar dilution by the number of colony-forming units showed the lowest MIC for S. aureus and the highest for L. acidophilus. Our RT-PCR findings indicated that water alone had no effect on the level of oral bacteria. Propolis mouthwash showed a significant difference with CHX and Listerine (P < 0.05) in terms of the number of S. mutans, E. faecalis, and L. acidophilus colonies, while CHX and Listerine were less efficient. There was no significant difference between CHX and propolis (P = 0.110) regarding S. aureus colonies, but Listerine had a lower efficacy than either (P < 0.05).

Conclusion:

According to the results, propolis mouthwash was more efficient against the studied oral bacteria compared to CHX and Listerine.

Sunday, October 20, 2019

Propolis Boosts Healing of Diabetic Foot Wounds


Propolis as an Adjuvant in the Healing of Human Diabetic Foot Wounds Receiving Care in the Diagnostic and Treatment Centre from the Regional Hospital of Talca

J Diabetes Res. 2019 Sep 12;2019:2507578

UY Concentrated Propolis in Veggie Capsules  

BUY 3-Piece (2 Fountain Pens, Rollerball) Gift Set

Objective:

Diabetic foot wounds are a relevant diabetes complication and a major health problem. It has been described that propolis has health benefits due to its anti-inflammatory, antioxidant, and support in the healing process. The current study assessed the effect of propolis as an adjuvant in the healing of human diabetic foot ulcers. This was evaluated in a randomized placebo-controlled study of subjects receiving care in the Diagnostic and Treatment Centre from the Regional Hospital of Talca, Chile.

Research Design and Methods:

Randomized subjects received ambulatory healing treatment for diabetes foot wounds with propolis spray (3%), which was applied to cover the entire wound surface each time it was dressed from week 0 until cicatrization or 8 weeks as a maximum. Two serum samples were taken (day 0 and end of the study) for cytokine and oxidative stress analyses. Also, macro- and microscopy were analyzed in the process of wound healing.

Results:

The study comprised 31 subjects with type 2 diabetes in treatment for diabetic foot wounds in the Diagnostic and Treatment Centre from the Regional Hospital of Talca. Propolis promotes a reduction of the wound's area by an average of 4 cm2, related to an increase in the connective tissue deposit compared to the control. Also, propolis increased the glutathione (GSH) and GSH/glutathione disulfide (GSSG) ratio (p < 0.02), depleted tumor necrosis factor- (TNF-) α, and increased interleukin- (IL-) 10 levels. Topical propolis did not modify the biochemical parameters in the serum of the studied subjects.

Conclusions:

The topical use of propolis turned out to be an interesting therapeutic strategy as an adjuvant in the care of diabetes foot wounds due to its ability to improve and promote healing based on its anti-inflammatory and antioxidant profile.

Saturday, October 19, 2019

Bee Pollen Protects Nervous System

The therapeutic and protective effects of bee pollen against prenatal methylmercury induced neurotoxicity in rat pups

Metab Brain Dis. 2019 Oct 17

BUY Concentrated Propolis in Veggie Capsules  

BUY 3-Piece (2 Fountain Pens, Rollerball) Gift Set

The current study evaluated the protective and therapeutic potency of bee pollen in ameliorating the toxic effects of methylmercury (MeHg), by measuring certain biochemical parameters related to neurotransmission, neuroinflammation, apoptosis, and glutamate excitotoxicity in the male neonate brain.

Healthy, pregnant female rats (N = 40) were randomly divided into 5 groups, each comprising10 male neonates, as follows: (i) neonates delivered by control mothers; (ii) neonates delivered by MeHg-treated mothers who received 0.5 mg/kg BW/day MeHg via drinking water from gestational day 7 till postnatal day 7; (iii) neonates delivered by bee pollen treated mothers who received 200-mg/kg BW bee pollen from postnatal day 0 for 4 weeks; (iv) protective group of neonates delivered by MeHg and bee pollen-treated mothers, who continued to receive bee pollen until day 21 at the same dose, and (v) therapeutic group of neonates delivered by MeHg- treated mothers followed by bee pollen treatment, wherein they received 200-mg/kg BW bee pollen from postnatal day 0 for 4 weeks.

Selected biochemical parameters in brain homogenates from each group were measured. MeHg-treated groups exhibited various signs of brain toxicity, such as a marked reduction in neurotransmitters (serotonin (5-HT), nor-adrenalin (NA), dopamine (DA)) and gamma aminobutyric acid (GABA) and elevated levels of interferon gamma (IFN-γ), caspase-3, and glutamate (Glu). Bee pollen effectively reduced the neurotoxic effects of MeHg. Minimal changes in all measured parameters were observed in MeHg-treated animals compared to the control group.

Therefore, bee pollen may safely improve neurotransmitter defects, inflammation, apoptosis, and glutamate excitotoxicity.

Thursday, October 17, 2019

Iranian Propolis Inhibits Cancer Cell Growth


Iranian propolis efficiently inhibits growth of oral streptococci and cancer cell lines

BMC Complementary and Alternative Medicine 

BUY Concentrated Propolis in Veggie Capsules  

BUY 3-Piece (2 Fountain Pens, Rollerball) Gift Set

Background

Propolis is a natural bee product with a wide range of biological activities that are related to its chemical composition. The present study investigated the quantification of quercetin (Q) in Ardabil ethanol extract of propolis (AEEP), and then compared its anti-bacterial, anti- biofilm and cytotoxic effects on cancer and normal cell lines.

Method

In the present study, the chemical composition of AEEP was determined through the high-performance liquid chromatography (HPLC). The AEEP and its main component, quercetin (Q), were evaluated in vitro against 57 oral streptococci by a broth micro-dilution method. The biofilm formation was assessed through the crystal violet staining and MTT assays. The impact of AEEP and Q anti-proliferative effect were evaluated on the fibroblast as normal and cancer cell lines (KB and A431).

Results

The Q concentration in the composition of AEEP was 6.9% of all its components. The findings indicated that the AEEP and Q were efficient against the cariogenic bacteria and were able to inhibit the S.mutans biofilm adherence at a sub-MIC concentration. Moreover, electron micrographs indicated the inhibition of biofilms compared to control biofilms. In addition, the AEEP and Q indicated a dose-dependent cytotoxic effect on A431 and KB cell lines. On the contrary, they had no cytotoxic effect on fibroblast cells.

Conclusion

The results indicated that the synergistic impact of main components of AEEP was related to the inhibition of the cancer cell proliferation, cariogenic bacteria and oral biofilm formation. It may play a promising role in the complementary medicine and, it is suggested to be used as food additives.

Wednesday, October 16, 2019

Propolis Helps Treat Diabetic Foot Wounds


Propolis as an Adjuvant in the Healing of Human Diabetic Foot Wounds Receiving Care in the Diagnostic and Treatment Centre from the Regional Hospital of Talca

J Diabetes Res. 2019 Sep 12;2019:2507578

BUY Concentrated Propolis in Veggie Capsules  

BUY 3-Piece (2 Fountain Pens, Rollerball) Gift Set

Objective:

Diabetic foot wounds are a relevant diabetes complication and a major health problem. It has been described that propolis has health benefits due to its anti-inflammatory, antioxidant, and support in the healing process. The current study assessed the effect of propolis as an adjuvant in the healing of human diabetic foot ulcers. This was evaluated in a randomized placebo-controlled study of subjects receiving care in the Diagnostic and Treatment Centre from the Regional Hospital of Talca, Chile.

Research Design and Methods:

Randomized subjects received ambulatory healing treatment for diabetes foot wounds with propolis spray (3%), which was applied to cover the entire wound surface each time it was dressed from week 0 until cicatrization or 8 weeks as a maximum. Two serum samples were taken (day 0 and end of the study) for cytokine and oxidative stress analyses. Also, macro- and microscopy were analyzed in the process of wound healing.

Results:

The study comprised 31 subjects with type 2 diabetes in treatment for diabetic foot wounds in the Diagnostic and Treatment Centre from the Regional Hospital of Talca. Propolis promotes a reduction of the wound's area by an average of 4 cm2, related to an increase in the connective tissue deposit compared to the control. Also, propolis increased the glutathione (GSH) and GSH/glutathione disulfide (GSSG) ratio (p < 0.02), depleted tumor necrosis factor- (TNF-) α, and increased interleukin- (IL-) 10 levels. Topical propolis did not modify the biochemical parameters in the serum of the studied subjects.

Conclusions:

The topical use of propolis turned out to be an interesting therapeutic strategy as an adjuvant in the care of diabetes foot wounds due to its ability to improve and promote healing based on its anti-inflammatory and antioxidant profile.

Tuesday, October 15, 2019

Combined Protective Effects of Malaysian Propolis and Metformin Improve Diabetic Male Fertility


Oxidative Stress, NF-κB-Mediated Inflammation and Apoptosis in the Testes of Streptozotocin-Induced Diabetic Rats: Combined Protective Effects of Malaysian Propolis and Metformin

Antioxidants (Basel). 2019 Oct 9;8(10). pii: E465

BUY Concentrated Propolis in Veggie Capsules  

BUY 3-Piece (2 Fountain Pens, Rollerball) Gift Set

Oxidative stress, inflammation and apoptosis are major complications that trigger organ failure in diabetes mellitus (DM), and are proven to adversely affect the male reproductive system.

Clinical and experimental studies have demonstrated the promising protective effects of propolis in DM and its associated systemic effects. Herein, we investigated the effect of Malaysian propolis (MP) on testicular oxidative stress, inflammation and apoptosis in diabetic rats. Further, the possibility of a complementary effect of MP with the anti-hyperglycaemic agent, metformin (Met), was studied with the idea of recommending its use in the event that Met alone is unable to contain the negative effects of DM on the male reproductive system in mind. Male Sprague-Dawley rats were either gavaged distilled water (normoglycaemic control and diabetic control groups), MP (diabetic rats on MP), Met (diabetic rats on Met) or MP+Met (diabetic rats on MP+Met), for 4 weeks. MP decreased oxidative stress by up-regulating (p < 0.05) testicular mRNA levels of nuclear factor erythroid 2-related factor 2, superoxide dismutase, catalase and glutathione peroxidase; increasing (p < 0.05) the activities of antioxidant enzymes; and decreasing (p < 0.05) lipid peroxidation in the testes and epididymis of diabetic rats.

Further, MP down-regulated (p < 0.05) testicular mRNA and protein levels of pro-inflammatory mediators (nuclear factor kappa B, inducible nitric oxide synthase, tumour necrosis factor-α and interleukin (IL)-1β), decreased (p < 0.05) the nitric oxide level, and increased (p < 0.05) IL-10 mRNA and protein levels. MP also down-regulated (p < 0.05) Bax/Bcl-2, p53, casapase-8, caspase-9 and caspase-3 genes, and increased (p < 0.05) testicular germ cell proliferation. MP's effects were comparable to Met. However, the best results were achieved following co-administration of MP and Met.

Therefore, we concluded that administration of the MP+Met combination better attenuates testicular oxidative stress, inflammation and apoptosis in DM, relative to MP or Met monotherapy, and may improve the fertility of males with DM.

Monday, October 14, 2019

Gelam Honey Promotes Corneal Wound Healing


Gelam honey promotes ex vivo corneal fibroblasts wound healing

Cytotechnology. 2019 Oct 12

BUY Concentrated Propolis in Veggie Capsules  

BUY 3-Piece (2 Fountain Pens, Rollerball) Gift Set

This study evaluated the effects of Gelam honey (GH) on ex vivo corneal fibroblast ulcer model via wound healing assay, gene expression and immunocytochemistry.

Corneal fibroblasts from New Zealand white rabbits were culture expanded. The corneal fibroblast wound healing capacity was observed by creating a circular wound onto confluent monolayer cells cultured in basal medium (BM), BM with GH, serum-enriched basal medium (BMS) and BMS with GH respectively.

Wound healing assay and phenotypic characterization of the corneal fibroblast were performed at different stages of wound closure. Expression of aldehyde dehydrogenase (ALDH), vimentin, α-smooth muscle actin (α-SMA), lumican, collagen I and matrix metalloproteinase 12 (MMP 12) were measured at day 1, day 3 and complete wound closure day. Corneal fibroblast cultured in BMS with GH demonstrated the fastest wound closure, at day 5 post wounding.

The gene expressions of ALDH and vimentin were higher than control groups while α-SMA expression was lower, in GH enriched media. The expressions of lumican, collagen I and MMP 12 were also higher in cells cultured in GH enriched media compared to the control groups.

GH was shown to promote in vitro corneal fibroblast wound healing and may be a potential natural adjunct in the treatment of corneal wound.

Wednesday, October 09, 2019

Bee Venom Component May Help Restore Memory in Alzheimer’s Disease (Aging, Ageing, Dementia, Brain, Mental, Cognitive)


Bee venom phospholipase A2 ameliorates amyloidogenesis and neuroinflammation through inhibition of signal transducer and activator of transcription-3 pathway in Tg2576 mice

Transl Neurodegener. 2019 Oct 2;8:26

BUY Concentrated Propolis in Veggie Capsules  

BUY 3-Piece (2 Fountain Pens, Rollerball) Gift Set

Background:

Neuroinflammation and accumulation of β-amyloid (Aβ) play a significant role in the onset and progression of Alzheimer's disease (AD). Our previous study demonstrated that signal transducer and activator of transcription-3 (STAT3) plays a major role in neuroinflammation and amyloidogenesis.

Methods:

In the present study, we investigated the inhibitory effect of bee venom phospholipase A2 (bvPLA2) on memory deficiency in Tg2576 mice, which demonstrate genetic characteristics of AD and the mechanism of its action at the cellular and animal level. For in vivo study, we examined the effect of bvPLA2 on improving memory by conducting several behavioral tests with the administration of bvPLA2 (1 mg/kg) to Tg2576 mice. For in vitro study, we examined the effect of bvPLA2 on amyloidogenesis and neuroinflammation by treating bvPLA2 on LPS-activated BV2 cells.

Results:

We found that bvPLA2 alleviated memory impairment in Tg2576 mice, as demonstrated in the behavioral tests assessing memory. In the bvPLA2-treated group, Aβ, amyloid precursor protein (APP), and β-secretase 1 (BACE1) levels and β-secretase activity were significantly decreased. Expression of pro-inflammatory cytokines and inflammation-related proteins decreased in the brain of bvPLA2-treated group, whereas anti-inflammatory cytokines increased. In addition, bvPLA2 reduced STAT3 phosphorylation in the brains of the bvPLA2-treated group. At the cellular level, bvPLA2 inhibits production of nitric oxide, pro-inflammatory cytokines, and inflammation-related proteins including p-STAT3. Additionally, bvPLA2 inhibits the production of Aβ in cultured BV-2 cells. Results from the docking experiment, pull-down assay, and the luciferase assay show that bvPLA2 directly binds STAT3 and, thus, regulates gene expression levels. Moreover, when the STAT3 inhibitor and bvPLA2 were administered together, the anti-amyloidogenic and anti-inflammatory effects were further enhanced than when they were administered alone.

Conclusion:

These results suggest that bvPLA2 could restore memory by inhibiting the accumulation of Aβ and inflammatory responses via blockage of STAT3 activity.

Tuesday, October 08, 2019

Propolis Prevents Damage to the Liver


Protective Role of Propolis on Low and High Dose Furan-induced Hepatotoxicity and Oxidative Stress in Rats

J Vet Res. 2019 Sep 13;63(3):423-431

BUY Concentrated Propolis in Veggie Capsules  

BUY 3-Piece (2 Fountain Pens, Rollerball) Gift Set

Introduction:

The aim of this study was to evaluate potential protective effects of propolis on furan-induced hepatic damage by assessing the levels of malondialdehyde (MDA) and reduced glutathione (GSH), antioxidant enzyme activities, and histopathological changes in the liver.

Material and Methods:

Albino Wistar rats were divided into six groups: a control, propolis-treated (100 mg/kg b.w./day), low-dose furan-treated (furan-L group; 2 mg/kg b.w./day), high-dose furan-treated (furan-H group; 16 mg/kg b.w./day), furan-L+propolis treated, and furan-H+propolis treated group. Propolis and furan were applied by gavage; propolis for 8 days, and furan for 20 days in furan-L groups and 10 days in furan-H groups.

Results:

While MDA levels were elevated in furan-treated groups, levels of GSH and activities of antioxidant enzymes decreased (p < 0.001). The levels of MDA and GSH and activities of antioxidant enzymes were normal in the furan+propolis groups, especially in the furan-L+propolis group (p < 0.001). While the aspartate transaminase, alanine transaminase, alkaline phosphatase, and lactate pdehydrogenase activities were elevated in the furan-H treated group (p < 0.05 and p < 0.001), they were unchanged in the furan-L treated group. Histopathologically, several lesions were observed in the liver tissues of the furan-treated groups, especially in the higher-dose group. It was determined that these changes were milder in both of the furan+propolis groups.

Conclusion:

The results indicate that propolis exhibits good hepatoprotective and antioxidant potential against furan-induced hepatocellular damage in rats.