Revista Brasileira de Farmacognosia, 2010, vol.20, n.3, pp. 368-375
Microemulsion systems (MES) offer advantages as drug delivery systems, among them favour drug absorption, being in most case more efficient than other methods in delivering of drug.
In this work a new MES was obtained in order to be applied as a pressurized aerosol formulation containing bee propolis ethanolic extract (PEE). For that, pseudoternary phase diagrams were used to characterize the microemulsions boundaries and also to define the Winsor IV microemulsion region of the PEE-MES system containing Tween 80 as surfactant and the cosurfactant ethyl alcohol in small percentage.
The obtained results indicated that the best MES was composed by Tween 80 and ethyl alcohol with C/S (cosurfactant/surfactant) ratio equal to 1.0, since it provided a large boundaries in the obtained O/W microemulsion region. This PEE-MES formulation, in which bee propolis consisting as oil phase, is herein designed for topical uses (PEE-MES spraying) in order to treat mouth and throat inflammatory infections.
Considering the very large uses of bee propolis in conventional vehicles, MES type of delivery system has to be compatible with achieving the highest drug aim loadings, determined substantially by the specific MES application (drug solubilization in water systems) improving in this case, propolis farmacological aplications. Additionally, PEE-MES antibacterial effect was evidenced and the microemulsion system PEE-
In this work a new MES was obtained in order to be applied as a pressurized aerosol formulation containing bee propolis ethanolic extract (PEE). For that, pseudoternary phase diagrams were used to characterize the microemulsions boundaries and also to define the Winsor IV microemulsion region of the PEE-MES system containing Tween 80 as surfactant and the cosurfactant ethyl alcohol in small percentage.
The obtained results indicated that the best MES was composed by Tween 80 and ethyl alcohol with C/S (cosurfactant/surfactant) ratio equal to 1.0, since it provided a large boundaries in the obtained O/W microemulsion region. This PEE-MES formulation, in which bee propolis consisting as oil phase, is herein designed for topical uses (PEE-MES spraying) in order to treat mouth and throat inflammatory infections.
Considering the very large uses of bee propolis in conventional vehicles, MES type of delivery system has to be compatible with achieving the highest drug aim loadings, determined substantially by the specific MES application (drug solubilization in water systems) improving in this case, propolis farmacological aplications. Additionally, PEE-MES antibacterial effect was evidenced and the microemulsion system PEE-
No comments:
Post a Comment