Unraveling a Mechanism of Honey Antibacterial Action: Polyphenol/H2O2-Induced Oxidative Effect on Bacterial Cell Growth and on DNA Degradation
Food Chemistry, Available online 24 January 2012
Several compounds with antibacterial activities were identified in honey. However, a mechanism by which they lead to bacterial growth inhibition and bacterial death remains still unknown.
We recently found that honeys possess DNA degrading activity mediated by honey hydrogen peroxide and an unknown honey component(s). Here we provide evidence that active honeys (MIC90 of 6.25% to 12.5% v/v) possessed significantly higher levels of phenolics (p<0.02) of higher radical scavenging activities (p<0.005) than honeys of average activity.
Removal of H2O2 by catalase eliminated bacteriostatic activities caused by both phenolics and H2O2 suggesting that the growth inhibition resulted from the coupling chemistry between these compounds. Both phenolics and H2O2 were involved in DNA degradation by honeys. Treatment of plasmid DNA with H2O2 alone did not affect the DNA integrity but H2O2 removal from honey by catalase prevented DNA degradation. Polyphenols extracted from honeys degraded plasmid DNA in the presence of H2O2 and Cu (II) in the Fenton-type reaction. The extent of DNA degradation was inversely related to the polyphenol concentration in this system as well as in honeys. At low content, honey polyphenols exerted pro-oxidant activity damaging to DNA.
In conclusion, honey phenolics with pro-oxidant activities were necessary intermediates that conferred oxidative action of H2O2. Phenolic/H2O2-induced oxidative stress constituted the mechanism of honey bacteriostatic and DNA damaging activities.
Highlights
► A coupling chemistry between polyphenols and H2O2 was the mechanism underlying DNA degradation by honey. ► Honey polyphenols emerged as active intermediates that were necessary to confer oxidative action of hydrogen peroxide. ► The antioxidant/prooxidant properties of honey polyphenols play a critical role in bacterial DNA degradation.
No comments:
Post a Comment